Synthesis of Unsymmetrical 1,1'-Disubstituted Bis(1,2,3-triazole)s Using Monosilylbutadiynes

LETTERS 2011 Vol. 13, No. 3 537–539

ORGANIC

Bradley C. Doak, Martin J. Scanlon, and Jamie S. Simpson*

Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia

Jamie.Simpson@monash.edu

Received November 25, 2010

ABSTRACT

$$\xrightarrow[R^1-N_3]{} R^2 - N_3 \xrightarrow[N^2-N_3]{} 1 \text{ pot} \\ 3 \text{ steps} \\ N \simeq N \\ N \simeq N$$

Bis(1,2,3-triazole)s have attracted recent interest as coordinating ligands for transition metals. Here we report a rapid, modular method for the synthesis of 1,1'-disubstituted-4,4'-linked unsymmetrical bis(1,2,3-triazole)s. The method employs sequential copper catalyzed azide—alkyne cycloaddition and deprotection steps on a monosilylbutadiyne. TMS (trimethylsilyl) and TIPS (triisopropylsilyl) were both investigated with TIPS being the preferred protecting group due to increased stability. The reactions were amenable to one-pot synthesis, and an optimized one-pot, three-step procedure was developed.

The copper(I)–catalyzed azide–alkyne cycloaddition (CuAAC) was reported in 2002 independently by both the Meldal and Sharpless groups and has come to be the quintessential click reaction.¹ It is generally high yielding and can be conducted under mild conditions leading to its widespread application in chemistry. The resulting triazole moiety has attracted attention for its coordinating properties,² including those of the symmetrical bis(1,2,3-triazole)s.³ Metal-coordinated triazoles have been shown to be efficient catalysts and to form supramolecular structures, and varying substituents plays an important role in tuning these properties.⁴ Despite this interest, a flexible and

efficient synthesis of unsymmetrical 4,4'-linked bis(1,2,3-triazole)s has had little attention until very recently.

Fiandanese et al.^{5a} first reported the synthesis of a number of simple unsymmetrical bistriazoles using mono TMSbutadiyne (TMS, trimethylsilyl). Initial CuAAC with an azide followed by deprotection with TBAF (tetrabutylammonium fluoride) and subsequent CuAAC gave the desired unsymmetrical bis(1,2,3-triazole)s. More recently Aizpurua et al. reported a synthesis which employed a CuAAC with propargyl alcohol, followed by conversion to the ethynyltriazole (Swern oxidation, then Ohira–Bestmann homologation) and then subsequent CuAAC to the unsymmetrical bis(1,2,3-triazole)s.^{5b} Recognizing the limitations associated with this method, Aizpurua et al. also employed the TMS-butadiyne method to produce a number of unsymmetrical bis(1,2,3-triazole)s.

At the same time, our laboratory was investigating a TMSbutadiyne based approach; however as we describe below, we encountered limitations that drove us to develop a more widely applicable approach to unsymmetrical 1,1'-disubstituted-4,4'-linked bis(1,2,3-triazole)s, which we report here.

Initially, we utilized the monodeprotection of bis-TMSbutadiyne to give TMS butadiyne (1),⁶ and reaction with benzyl azide under standard CuAAC conditions produced the silyl protected ethynyltriazole $2,^5$ along with small amounts of deprotected ethynyltriazole 3 and symmetrical

^{(1) (}a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596. (b) Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057. (c) Meldal, M.; Tornoe, C. W. Chem. Rev. 2008, 108, 2952.

^{(2) (}a) Struthers, H.; Mindt, T. L.; Schibli, R. *Dalton Trans.* **2010**, *39*, 675. (b) Yano, M.; Tong, C. C.; Light, M. E.; Schmidtchen, F. P.; Gale, P. A. *Org. Biomol. Chem.* **2010**, *8*, 4356. (c) Crowley, J. D.; Bandeen, P. H.; Hanton, L. R. *Polyhedron* **2010**, *29*, 70. (d) Urankar, D.; Pinter, B.; Pevec, A.; De Proft, F.; Turel, I.; Kosšmrlj, J. *Inorg. Chem.* **2010**, *49*, 4820.

^{(3) (}a) Monkowius, U.; Ritter, S.; Konig, B.; Zabel, M.; Yersin, H. *Eur. J. Inorg. Chem.* **2007**, *29*, 4597. (b) Fletcher, J. T.; Bumgarner, B. J.; Engels, N. D.; Skoglund, D. A. *Organometallics* **2008**, *27*, 5430. (c) Crowley, J. D.; Bandeen, P. H. *Dalton Trans.* **2010**, *39*, 612.

^{(4) (}a) Warsink, S.; Drost, R. M.; Lutz, M.; Spek, A. L.; Elsevier, C. J. *Organometallics* **2010**, *29*, 3109. (b) Schuster, E. M.; Botoshansky, M.; Gandelman, M. Angew. Chem., Int. Ed. **2008**, *47*, 4555. (c) Gower, M. L.; Crowley, J. D. *Dalton Trans.* **2010**, *39*, 2371.

bistriazole **4**. Aizpurua et al. also noted isolation of symmetrical bistriazoles from some azides in this manner and reported overcoming this by changing conditions to CuI, $EtN(i-Pr)_2$ in acetonitrile; in our hands these conditions also gave similar amounts of symmetrical bistriazole. Deprotection with KF gave ethynyl triazole **3** in quantitative yield, and subsequent CuAAC with a variety of azides then gave a number of unsymmetrical bistriazoles **5a**-**e** in moderate to low yields (Table 1).

In seeking to investigate a broader range of substitutents in this reaction, we trialled the CuAAC with (*S*)-azidobenzylacetic acid (**6**) under standard conditions but found the symmetrical bistriazole **7** as the major product in 40% yield (Scheme 1). The increased yield of bistriazole was attributed to the acidic nature of azide **6** leading to cleavage of the TMS group. Noting the reported instability of the TMS group to copper,⁷ we sought to utilize the more stable TIPS-

protected butadiyne (TIPS, triisopropylsilyl), in order to retain the selective and modular nature of the synthesis but with greater functional group tolerance.

TIPS-protected butadiyne 8 was prepared according to the reported procedure in 70% yield over three steps.⁸

Subsequent CuAAC with azide **6** then gave silyl protected ethynyl triazole **9a** in 54 and 48% yield with copper iodide and copper sulfate/sodium ascorbate procedures respectively; no symmetrical bistriazole was observed. Given the moderate yield of silyl protected ethynyl triazole **9a**, optimization by excluding oxygen and the addition of catalytic amounts of tris-(benzyltriazolylmethyl)amine (TBTA) was undertaken, improving the yield of **9a** to 65% (Table 2).⁹ Both TBAF and CsF were used to deprotect TIPS ethynyl triazole **9b** in

Table 2. Synthesis of 4-Ethynyltriazoles with TIPS Protection^a

R	product	step a yield (%) ^b	product	step b yield (%) ^b
HOTO	9a	65	10a	26 [°]
\sim	9b	70	3	$97 \\ (80)^d$
	9c	81	10c	67
	9d	57	10d	67
NO ₂	9e	78	10e	66

^{*a*} Conditions: (a) CuI, EtN(*i*-Pr)₂, TBTA, under N₂; (b) TBAF. ^{*b*} Yield of isolated purified product. ^{*c*} Decomposed during purification. ^{*d*} CsF procedure.

^{(5) (}a) Fiandanese, V.; Bottalico, D.; Marchese, G.; Punzi, A.; Capuzzolo,
F. *Tetrahedron* 2009, 65, 10573. (b) Aizpurua, J. M.; Azcune, I.; Fratila,
R. M.; Balentova, E.; Sargartzazu-Azipurua, M.; Miranda, J. I. Org. Lett.
2010, 12, 1584.

⁽⁶⁾ Holmes, A. B.; Jennings-White, C. L. D.; Schulthess, A. H. Chem. Commun. 1979, 840.

97 and 80% yield respectively, demonstrating TBAF to be the preferred fluoride source. A number of TIPS ethynyl triazoles 9b-e were then synthesized by this method (Table 2), and some converted to bistriazoles (Table 3).

Table 3. Synthesis of Bis(1,2,3-triazole)s^a R^1 $N \rightarrow R^2$ R^1 $N \rightarrow R^2$ $N \sim N$ $N \sim N$ $N \sim N^2$ N^2 10b, c, e11b, c, e11b, c, eproduct R^1 R^2 yield
11 (%)^b11b $A \rightarrow R^2$ $A \rightarrow R^2$ 11b $A \rightarrow R^2$ $A \rightarrow R^2$ 11c $A \rightarrow R^2$ $A \rightarrow R^2$ 11c $A \rightarrow R^2$ $A \rightarrow R^2$ 11e $A \rightarrow R^2$ $A \rightarrow R^2$

^a Conditions: CuI, EtN(*i*-Pr)₂, TBTA, under N₂. ^b Isolated purified yield.

After TBAF deprotections, the ¹H NMR spectrum of the crude product showed that both the CuAAC and silyl deprotection generally proceeded with high conversion and gave only inoffensive byproducts. This suggested a one-pot multistep procedure may also give the desired bistriazoles while reducing time and the number of isolation and purification steps required.

Initially, one-pot two-step procedures for the initial CuAAC/TBAF deprotection and alternately the TBAF deprotection/final CuAAC were conducted with good results; in either case, the overall yield for the three steps was 45% for bistriazole **11b** (Scheme 2), compared to 43% overall for the three separate reactions. Two additional one-pot click and deprotection reactions (Scheme 2) gave similar results.

We next investigated a one-pot three-step procedure. The one-pot three-step synthesis of bistriazole **11b** gave a yield of 49% for a slight improvement over the multipot approaches (Table 4, entry b). Two additional novel bistriazoles were then synthesized via the one-pot procedure (Table 4),

 a Conditions: (a) CuI, EtN(*i*-Pr)₂, TBTA, MeCN, under N₂, 20 h; (b) TBAF, 20 min then AcOH; (c) 16 h. b Isolated purified yield.

demonstrating a viable synthetic approach involving a single purification step.

In summary, an efficient and selective modular synthesis of 1,1'-unsymmetrical-4,4'-linked bis(1,2,3-triazole)s from silylbutadiynes was developed. This method is amenable to a simple, one-pot three-step procedure.

Acknowledgment. We thank Monash University for funding. B.C.D. was supported by an APA scholarship.

Supporting Information Available: Experimental procedures and spectroscopic data for all novel compounds and key literature compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL102852Z

⁽⁷⁾ Valverde, I. E.; Delmas, A. F.; Aucagne, V. Tetrahedron 2009, 65, 7597.

⁽⁸⁾ Jiang, M. X.-W.; Rawat, M.; Wulff, W. D. J. Am. Chem. Soc. 2004, 126, 5970.
(9) Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett.

⁽⁹⁾ Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. *Org. Lett.* **2004**, *6*, 2853.